PCSI

Programme de colle : Semaine 4 (10/10 au 14/10)

Chapitre 5: Nombres complexes

Parties réelle et imaginaire. Opérations sur les nombres complexes.

Formule du binôme. $\sum_{k=0}^{n} x^k$ et factorisation de $a^n - b^n$ dans C.

Point du plan associé à un nombre complexe, affixe d'un point, affixe d'un vecteur.

Conjugaison, compatibilité avec les opérations. Image du conjugué dans le plan complexe. Module. Module d'un produit, d'un quotient.

Inégalité triangulaire, cas d'égalité.

★ : démonstration de l'inégalité triangulaire sur la base du volontariat.

Interprétation géométrique de |z-z'|, cercles et disques.

Chapitre 4: Applications

Application. Notation : $f: E \to F$, composée d'applications, restriction et prolongement d'une application, application injective; surjective; bijective, bijection réciproque d'une application bijective.

Théorème de la bijection,

Image directe et réciproque.

 \bigstar : Montrer f est bijective et déterminer sa bijection réciproque :

 $f: \begin{array}{ccc} \mathbf{R}^2 & \rightarrow & \mathbf{R}^2 \\ (x,y) & \mapsto & (x+y,x-y) \end{array}$

 $f: (x,y) \mapsto (x+y,x-y)$ $\bigstar: \text{Montrer que l'application } f: \begin{array}{c} \mathbf{R} \longrightarrow \mathbf{R} \\ x \mapsto \exp(2x+1) \end{array} \text{ est injective.}$ $\bigstar: \text{Montrer que 1 n'a pas d'antécédent par l'application } f: \begin{array}{c} \mathbf{R} \setminus \{1\} \longrightarrow \mathbf{R} \\ z \mapsto \frac{z}{z-1} \end{array}$

puis que $\tilde{f}: \begin{array}{ccc} \mathbf{R} \setminus \{1\} & \longrightarrow & \mathbf{R} \setminus \{1\} \\ z & \mapsto & \frac{z}{z-1} \end{array}$ est une application surjective.

Chapitre 3 : Calculs trigonométriques

cercle trigonométrique, définition du cosinus, du sinus, relation fondamentale, valeurs remarquables,

relation de congruence modulo 2π sur **R**. Notation $a \equiv b[2\pi]$.

Cosinus et sinus de $\pi \pm x$, de $\frac{\pi}{2} \pm x$.

Formules d'addition $\cos(a \pm b)$, $\sin(a \pm b)$. Cas particulier : $\cos(2a)$, $\sin(2a)$.

Savoir retrouver rapidement les formules donnant $\cos(a)\cos(b)$, $\cos(a)\sin(b)$, $\sin(a)\sin(b)$.

Fonctions circulaires cosinus et sinus.

 $\star : \lim_{x \to 0} \frac{\sin(x)}{x} = 1$ $\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$

 \bigstar : La fonction sin est dérivable sur \mathbf{R} et $\forall x \in \mathbf{R}, \sin' = \cos$.

Résolution d'équations et inéquations trigonométriques.

Pour $x \in \mathbf{R}$, inégalité $|\sin(x)| \leq |x|$.

Fonction tangente. Notation tan. Dérivée, variations, représentation graphique.

Tangente de $\pi \pm x$. Tangente des angles usuels. Interprétation sur le cercle trigonométrique. Formule d'addition $tan(a \pm b)$.

 \bigstar : Pour $x \in \mathbf{R}$, inégalité $|\sin(x)| \leqslant |x|.$

Tous les énoncés de propriétés et toutes les définitions sont à connaitre. Chacun des étudiants sera interrogé sur un exercice étoilé.