Mathématiques Année 2022-2023

PCSI

Programme de colle : Semaine 24 (02/05 au 05/05)

Chapitre: Espaces vectoriels

Définition, règles de calculs, espaces vectoriels de références : \mathbf{K}^n , $\mathcal{M}_{n,p}(\mathbf{K})$, $\mathcal{F}(I,\mathbf{K})$, $\mathcal{F}(E,F)$, $\mathbf{K}^{\mathbf{N}}$, $\mathbf{K}[X]$, $E \times F$.

Sous-espaces vectoriels : définition, critère (caractérisation) de sev,

intersection de sous-espaces vectoriels.

Sous-espace engendré par une famille finie de vecteurs.

Combinaisons linéaires : définition

Familles finies de vecteurs : Familles génératrices , Familles libres, familles liées : définitions, propriétés. Toute famille finie de polynômes non nuls à coefficients dans K et de degrés échelonnés est libre. .

Base d'un espace vectoriel, coordonnées d'un vecteur dans une base (matrice colonne), bases canoniques de \mathbf{K}^n , de $\mathbf{K}_n[X]$, de $\mathcal{M}_{n,p}(\mathbf{K})$.

 \bigstar : Montrer que $F_1 = \{(x, y, z) \in \mathbb{C}^3 \mid x + 5y - z = 0\}$ est un espace vectoriel, et déterminer une base de F_1 ;

Somme de deux sous-espaces vectoriels, somme directe Caractérisation par l'intersection. Sous-espaces supplémentaires (exemples avec les matrices symétriques/antisymétriques et fonctions paires/impaires). Base adaptée à une somme directe.

 \star : Montrer que $\mathbf{K}_n[X]$ est un sous-espace vectoriel de $\mathbf{K}[X]$.

 \bigstar : l'ensemble des fonctions paires de $\mathbf R$ dans $\mathbf K$. Montrer que $\mathcal P$ est un sous-espace vectoriel de $\mathcal F(R,\mathbf K)$.

 \bigstar : On considère le **K**-espace vectoriel $\mathcal{F}(I,\mathbf{K})$ des fonctions définies sur I à valeurs dans \mathbf{K} , où I désigne un intervalle non trivial de \mathbf{R} centré en 0. On considère également deux sous-espaces vectoriels de $\mathcal{F}(I,\mathbf{K})$: \mathcal{P} l'ensemble des fonctions paires définies sur I et \mathcal{I} l'ensemble des fonctions impaires définies sur I. Montrer que

$$\mathcal{F}(I, \mathbf{K}) = \mathcal{P} \oplus \mathcal{I}.$$

Chapitre: Espaces vectoriels en dimension finie

Dimension finie : définition, théorème de la base extraite, théorème de la base incomplète.

Dimensions des espaces vectoriels : \mathbf{K}^n , $\mathbf{K}_n[X]$, $\mathcal{M}_{n,p}(\mathbf{R})$. Dimension de $(E \times F)$.

Soit E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$ et \mathcal{F} une famille formée de n éléments. Les propriétés suivantes sont équivalentes :

 \mathcal{F} est une base de $E \Leftrightarrow \mathcal{F}$ est libre $\Leftrightarrow \mathcal{F}$ est génératrice de E.

★ : Montrer que ((0,1,1),(1,0,1),(1,1,0)) est une base de \mathbb{R}^3 .

Rang d'une famille finie de vecteurs d'un K-espace vectoriel de dimension quelconque. Caractérisation des familles finies libres, génératrices par le rang.

Dimension d'un sous-espace d'un espace de dimension finie. Cas d'égalité.

 \star : On considère le **R**-espace vectoriel $E = \mathbf{R}^3$ et quatre vecteurs

$$\vec{u} = (1, 2, 3), \ \vec{v} = (2, -1, 1), \ \vec{w} = (1, 0, 1), \ \vec{x} = (0, 1, 1).$$

Montrer que $Vect(\vec{u}, \vec{v}) = Vect(\vec{w}, \vec{x})$.

Vocabulaire: droite vectorielle, plan vectoriel, hyperplan.

Tous les énoncés de propriétés et toutes les définitions sont à connaitre. Chacun des étudiants sera interrogé sur un exercice étoilé.